top of page
  • Grey LinkedIn Icon
  • Grey Pinterest Icon
  • Grey Instagram Icon
  • Architizer
2019-08-28 Science One - View from Parking.jpg
A Walk in the Park at UConn

Come fall 2022, many students returning to UConn’s Storrs campus will enter via the Northwest Science Quad, where Science 1, a 198,000 sf LEED Gold building, will be open for learning. It will be a pleasant walk through a woodland corridor full of indigenous shade trees and plants that attract pollinators. Most won’t know they’re strolling through a Low Impact Development (LID), SITES-certified landscape — a model of green infrastructure and restoration resulting from a highly orchestrated engineering and landscape effort. And that’s OK. That’s the point of deep integration. 






















 

Borne out of UConn’s 2015 masterplan to position itself as a STEM education leader, the Northwest Science Quad (NWSQ) unites UConn’s research expansion, academic vision, and culture of innovation with assertive sustainability goals. Identified within these goals are a range of material, waste, land and water-use initiatives that include preserving campus ecosystems and optimizing rainwater management. 

BVH and Towers|Golde had been consulting with UConn on these issues prior to joining Payette’s consulting team for Science 1.    BVH updated the campus stormwater masterplan in 2016. This provided insight for how the overall system relates to the NWSQ, and included study of the Eagleville Brook watershed, which was not meeting water quality standards to support aquatic life. That needed to change. 

BVH had also examined utility and infrastructure issues for the NWSQ in a feasibility study, a good portion of which had us working alongside Towers|Golde, who was looking at how the utility corridors could best coincide with walkways and roads to minimize impacts on the landscape. We were working in parallel to develop solutions that would facilitate stormwater capture and treatment. 














 








The upshot of this well-established familiarity — with each other and the site — is evident in the 13 acres of synergy between utilities, stormwater management, habitat restoration, architecture and site enhancement known as the Northwest Science Quad. These elements are so intertwined as to be all but inseparable, each dependent on the other for success, much the way any high-functioning ecosystem operates. Improved pedestrian access, aesthetics, and wildlife health are some of the big benefits of carefully designed bioretention elements, vegetated swales, subsurface infiltration and porous pavements. 

Integrating the engineering and landscape required close coordination on basin grading, shaping and elevations to achieve required volumes and allow conveyance from one basin to another. This also applied to the design and shape of overflow weirs in order to provide adequate flow while also providing an appealingly natural feature. Soils and plants were selected to allow for some inundation in the basins, while also filtering water through the soil media. Pervious pavement in the parking lot was also key– all the water that would need to be directed somewhere else could now simply filter through into the ground. 





















Through deep disciplinary integration and relentless coordination, BVH and Towers|Golde, together with Payette, developed a welcoming pathway through a vibrant woodland and waterway ecosystem that improves the Eagleville Brook watershed. For those walking along and interested, signage will explain many of these components. For others, it will simply be a walk in the park. 




About the authors:

 
Scott P. Waitkus, P.E., Vice President, BVH Integrated Services, P.C. 
Scott Waitkus, P.E., is a Vice President at BVH with 35 years of experience in the design and construction industry. With a focus on carbon neutrality and energy efficiency, the depth of Scott’s experience ranges from masterplans and utility tunnels for colleges and universities to renovations and new construction of healthcare, hospitality and commercial projects. 


Robert J. Golde, PLA, FASLA, Principal, Towers|Golde 
Robert Golde, FASLA, principal of Towers|Golde in New Haven, CT practices a highly collaborative approach to site design wherein environmental factor, cultural character and design aesthetic are carefully interwoven so as to unite site and structure and create memorable places of distinctive character that are rooted in their geography and enrich the daily lives of individuals and their communities. 
2020-01-09 Overall Science One Landscape Plan.jpg
2019-08-28 Science One - View from East.jpg
2020-01-21 TG_Sites Sign_sm.jpg
bottom of page